Pattern Search Methods for Linearly Constrained Minimization

نویسندگان

  • Robert Michael Lewis
  • Virginia Torczon
چکیده

We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a KarushKuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative of the objective. Key to the analysis of the algorithms is the way in which the local search patterns conform to the geometry of the boundary of the feasible region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Search Methods for Linearly Constrained Minimization in the Presence of Degeneracy

This paper deals with generalized pattern search (GPS) algorithms for linearly constrained optimization. At each iteration, the GPS algorithm generates a set of directions that conforms to the geometry of any nearby linear constraints, and this set is used to define the poll set for that iteration. The contribution of this paper is to provide a detailed algorithm for constructing the set of dir...

متن کامل

Combining pattern search and implicit filtering for solving linearly constrained minimization problems with noisy objective functions∗

PSIFA –Pattern Search and Implicit Filtering Algorithm– is a derivative-free algorithm that has been designed for linearly constrained problems with noise in the objective function. It combines some elements of the pattern search approach of Lewis and Torczon (2000) with ideas from the method of implicit filtering of Kelley (2011). The global convergence analysis is presented, encompassing the ...

متن کامل

A pattern search and implicit filtering algorithm for solving linearly constrained minimization problems with noisy objective functions∗

PSIFA –Pattern Search and Implicit Filtering Algorithm– is a derivative-free algorithm that has been designed for linearly constrained problems with noise in the objective function. It combines some elements of the pattern search approach of Lewis and Torczon (2000) with ideas from the method of implicit filtering of Kelley (2011) enhanced with a further prospection of the current face and a si...

متن کامل

Second Order Behavior of Pattern Search Algorithms

Abstract: Previous analyses of pattern search algorithms for unconstrained and linearly constrained minimization have focused on proving convergence of a subsequence of iterates to a limit point satisfying either directional or first-order necessary conditions for optimality, depending on the smoothness of the objective function in a neighborhood of the limit point. Even though pattern search m...

متن کامل

Second-Order Behavior of Pattern Search

Previous analyses of pattern search algorithms for unconstrained and linearly constrained minimization have focused on proving convergence of a subsequence of iterates to a limit point satisfying either directional or first-order necessary conditions for optimality, depending on the smoothness of the objective function in a neighborhood of the limit point. Even though pattern search methods req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2000